A Novel Seasonal Fuzzy Time Series Method to the Forecasting of Air Pollution Data in Ankara

نویسندگان

  • Ozge Cagcag
  • Ufuk Yolcu
  • Erol Egrioglu
  • Cagdas Hakan Aladag
چکیده

Fuzzy time series forecasting methods have been widely studied in recent years. This is because fuzzy time series forecasting methods are compatib le with flexib le calculat ion techniques and they do not require constraints that exist in conventional time series approaches. Most of the real life time series exh ibit periodical changes arising from seasonality. These variations are called seasonal changes. Although, conventional time series approaches for the analysis of time series which have seasonal effect are abundant in literature, the number of fuzzy t ime series approaches is limited. In almost all of these studies, membership values are ignored in the analysis process. This affects forecasting performance of the approach negatively due to the loss of information as well as posing a situation that is incompatible with the basic features of fuzzy set theory. In this study, for the first time in literature, a new seasonal fuzzy time series approach which considers membership values in both identificat ion of fuzzy relat ions and defuzzification steps was proposed. In the proposed method, we used fuzzy C-means clustering method in fuzzification step and artificial neural networks (ANN) in identification of fuzzy relation and defuzzification steps which consider membership values. The proposed method was applied to various seasonal fuzzy time series and obtained results were compared with some conventional and fuzzy time series approaches. In consequence of this evaluation, it was determined that forecasting performance of the proposed method is satisfactory.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A NEW APPROACH BASED ON OPTIMIZATION OF RATIO FOR SEASONAL FUZZY TIME SERIES

In recent years, many studies have been done on forecasting fuzzy time series. First-order fuzzy time series forecasting methods with first-order lagged variables and high-order fuzzy time series forecasting methods with consecutive lagged variables constitute the considerable part of these studies. However, these methods are not effective in forecasting fuzzy time series which contain seasonal...

متن کامل

The fuzzy logic in air pollution forecasting ‎model

In the paper a model to predict the concentrations of particulate matter PM10, PM2.5, SO2, NO, CO and O3 for a chosen number of hours forward is proposed. The method requires historical data for a large number of points in time, particularly weather forecast data, actual weather data and pollution data. The idea is that by matching forecast data with similar forecast data in the historical data...

متن کامل

Forecasting Air Pollution Concentrations in Iran, Using a Hybrid Model

The present study aims at developing a forecasting model to predict the next year’s air pollution concentrations in the atmosphere of Iran. In this regard, it proposes the use of ARIMA, SVR, and TSVR, as well as hybrid ARIMA-SVR and ARIMA-TSVR models, which combined the autoregressive part of the autoregressive integrated moving average (ARIMA) model with the support vector regression technique...

متن کامل

بررسی و پیش بینی وضع آلاینده های هوای شهر کرمان با مدل سری های زمانی

  Anderson, H.R., 2009. Air pollution and mortality: A history. Atmospheric Environment, 43, pp. 142-152 .   Box, GEP. and Jenkins, G.M., 1976. Time series analysis: forecasting and control, San Francisco, Holden Day Pulications .   Duenas, C., Fernandez, M.C., Canete, S., Carretero,Liger E, 2005. Stocastic model to forecast ground level ozone concentration at urban and rural areas . Chemospher...

متن کامل

Time Variant Fuzzy Time Series Approach for Forecasting Using Particle Swarm Optimization

  Fuzzy time series have been developed during the last decade to improve the forecast accuracy. Many algorithms have been applied in this approach of forecasting such as high order time invariant fuzzy time series. In this paper, we present a hybrid algorithm to deal with the forecasting problem based on time variant fuzzy time series and particle swarm optimization algorithm, as a highly effi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013